- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Jiang, Shiyan (3)
-
Tatar, Cansu (3)
-
Chao, Jie (2)
-
Rosé, Carolyn P. (2)
-
Finzer, William (1)
-
Huang, Xudong (1)
-
Nocera, Amato (1)
-
Sung, Shannon H. (1)
-
Tang, Hengtao (1)
-
Wiedemann, Kenia (1)
-
Xie, Charles (1)
-
Yoder, Michael Miller (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& *Soto, E. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
It’s critical to foster artificial intelligence (AI) literacy for high school students, the first generation to grow up surrounded by AI, to understand working mechanism of data-driven AI technologies and critically evaluate automated decisions from predictive models. While efforts have been made to engage youth in understanding AI through developing machine learning models, few provided in-depth insights into the nuanced learning processes. In this study, we examined high school students’ data modeling practices and processes. Twenty-eight students developed machine learning models with text data for classifying negative and positive reviews of ice cream stores. We identified nine data modeling practices that describe students’ processes of model exploration, development, and testing and two themes about evaluating automated decisions from data technologies. The results provide implications for designing accessible data modeling experiences for students to understand data justice as well as the role and responsibility of data modelers in creating AI technologies.more » « less
-
Jiang, Shiyan; Nocera, Amato; Tatar, Cansu; Yoder, Michael Miller; Chao, Jie; Wiedemann, Kenia; Finzer, William; Rosé, Carolyn P. (, British Journal of Educational Technology)
-
Jiang, Shiyan; Tatar, Cansu; Huang, Xudong; Sung, Shannon H.; Xie, Charles (, Journal of Educational Computing Research)null (Ed.)Augmented reality (AR) has the potential to fundamentally transform science education by making learning of abstract science ideas tangible and engaging. However, little is known about how students interacted with AR technologies and how these interactions may affect learning performance in science laboratories. This study examined high school students’ navigation patterns and science learning with a mobile AR technology, developed by the research team, in laboratory settings. The AR technology allows students to conduct hands-on laboratory experiments and interactively explore various science phenomena covering biology, chemistry, and physics concepts. In this study, seventy ninth-grade students carried out science laboratory experiments in pairs to learn thermodynamics. Our cluster analysis identified two groups of students, which differed significantly in navigation length and breadth. The two groups demonstrated unique navigation patterns that revealed students’ various ways of observing, describing, exploring, and evaluating science phenomena. These navigation patterns were associated with learning performance as measured by scores on lab reports. The results suggested the need for providing access to multiple representations and different types of interactions with these representations to support effective science learning as well as designing representations and connections between representations to cultivate scientific reasoning skills and nuanced understanding of scientific processes.more » « less
An official website of the United States government
